POTENCIAL DIABETOGÊNICO DO SARS-COV-2 EM PACIENTES PÓS COVID-19

Sandrieli Francisco Dias Pereira, Leonardo Figueira Reis de Sá, Dhyemila de Paula Mantovani Gonçalves

Resumo


A doença do novo coronavírus, COVID-19, causada pelo SARS-CoV-2 (síndrome
respiratória aguda grave 2) foi anunciada como pandemia pela OMS em 11 de março de
2020. A relação entre COVID-19 e Diabetes Mellitus é expressa mediante a afinidade do vírus
pelos sítios de ligação da Enzima Conversora de Angiotensina 2 (ACE2). A ACE2 é o receptor
funcional presente nas superfícies celulares através do qual o SARS-CoV-2 entra nas células
hospedeiras, sendo encontrado em abundância em células do endotélio, dos pulmões e
outros órgãos, até mesmo nas ilhotas pancreáticas. Sabe-se que o diabetes é uma das
principais comorbidades pré-existentes relacionadas à gravidade da COVID-19, incluindo
hipertensão, doenças cardiovasculares e obesidade. Essa revisão tem como objetivo analisar
o potencial diabetogênico do SARS-CoV-2 em pacientes pós COVID-19. Este estudo foi
desenvolvido a partir de uma revisão bibliográfica em artigos disponíveis em plataformas
digitais como PubMed e SCIELO (Scientific Electronic Library Online). Foi utilizado um filtro
de busca de 2010 a 2022. Após análise crítica dos artigos selecionados no critério de inclusão,
considerando a credibilidade, aceitabilidade e veracidade dos mesmos, deu-se origem a
revisão integrativa da literatura. Entendeu-se que existem alguns fatores apontados como 

responsáveis pela hiperglicemia de “início recente” além da infecção direta do SARS-CoV-2
no pâncreas. Concluiu-se que a infecção pelo SARS-CoV-2 pode ser considerado como fator
causal da hiperglicemia e, em alguns casos, diabetes de início recente, porém ainda não há
consenso científico sobre a permanência deste estado hiperglicêmico.


Texto completo:

Sem título

Referências


ABRAMCZYK, Urszula et al. Consequences of COVID-19 for the

Pancreas. International Journal of Molecular Sciences, v. 23, n. 2, p. 1-14, jan.

Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776154/.

Acesso em: 25 ago. 2022.

ADA. American Diabetes Association. 2. Classification and Diagnosis of

Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care, v. 42, p. 13-

, jan. 2019. DOI: 10.2337/dc19-S002.

ADA. American Diabetes Association. 2. Classification and Diagnosis of

Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care, v. 43, p. 14-

, jan. 2020. DOI: 10.2337/dc20-S002.

SSELAH, Tarik et al. COVID-19: Discovery, diagnostics and drug development.

Journal of Hepatology, v. 74, n.1, p. 168-184, out. 2021. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7543767/. Acesso em: 10 ago. 2022.

AYOUBKHANI, Daniel et al. Post-covid syndrome in individuals admitted to hospital

with covid-19: retrospective cohort study. BMJ, v. 372, p. 1-10, mar. 2021. Disponível

em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010267/. Acesso em: 14 out.

BEYERSTEDT, Stephany et al. COVID-19: angiotensin-converting enzyme 2 (ACE2)

expression and tissue susceptibility to SARS-CoV-2 infection. European Journal of

Clinical Microbiology & Infectious Diseases, v. 40, n. 5, p. 905-919, jan. 2021.

Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7778857/. Acesso em:

ago. 2022.

BOURGONJE, Arno R et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2

and the pathophysiology of coronavirus disease 2019 (COVID-19). The Journal of

Pathology, v. 251, n. 3, p. 228-248, jul.2020. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7276767/. Acesso em: 19 ago. 2022.

BUSS, Paulo M et al. Pandemia pela Covid-19 e multilateralismo: reflexões a meio do

caminho. Estudos Avançados, v. 34, n. 99, p. 45-64, ago. 2020. Disponível em:

https://www.scielo.br/j/ea/a/8vDqhLKszp35HJMtj5WnRNK/?lang=pt. Acesso em: 16

out. 2022.

CAMPBELL, Jonathan E.; NEWGARD, Christopher B. Mechanisms controlling

pancreatic islet cell function in insulin secretion. Nature Reviews Molecular Cell

Biology, v. 22, n. 2, p. 142-158, fev. 2021. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115730/. Acesso em: 31 ago. 2022.

CHAI, Chen et al. Effect of elevated fasting blood glucose level on the 1-year mortality

and sequelae in hospitalized COVID-19 patients: A bidirectional cohort study. Journal

of Medical Virology, v. 94, n. 7, p. 3240-3250, abr. 2022. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088618/. Acesso: 12 out. 2022.

CHATTERJEE, Sudesna et al. Type 2 diabetes. The Lancet, Londres, v. 389, n.

, p. 2239-2251, jun. 2017. DOI:10.1016/S0140-6736(17)30058-2.

DIMEGLIO, Linda A et al. Type 1 diabetes. The Lancet, Londres, v. 391, n.10138, p.

-2462, jun. 2018. DOI:10.1016/S0140-6736(18)31320-5.

EVANS, John P.; LIU, Shan-Lu. Role of host factors in SARS-CoV-2 entry. The

Journal of Biological Chemistry, v. 297, n. 1, p. 1-10, maio 2021. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8160279/. Acesso em: 16 ago. 2022.

FIGNANI, Daniela et al. SARS-CoV-2 Receptor Angiotensin I-Converting Enzyme

Type 2 (ACE2) Is Expressed in Human Pancreatic β-Cells and in the Human Pancreas

Microvasculature. Frontiers in Endocrinology, v. 11, p. 1-19, nov. 2020. Disponível

em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691425/. Acesso em: 24 ago.

FU, Zhuo et al. Regulation of insulin synthesis and secretion and pancreatic Beta-cell

dysfunction in diabetes. Current Diabetes Reviews, v. 9, n.1, p. 25-53, jan. 2013.

Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3934755/. Acesso em:

set. 2022.

GALICIA-GARCIA, Unai et al. Pathophysiology of Type 2 Diabetes

Mellitus. International Journal of Molecular Sciences, v. 21, n. 17, p. 1-34, ago.

Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503727/.

Acesso em: 25 set. 2022.

GERAVANDI, Shirin et al. SARS-CoV-2 and pancreas: a potential pathological

interaction? Trends in Endocrinology and Metabolism, v. 32, n. 11, p. 842-845,

nov. 2021. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8302839/.

Acesso em: 25 ago. 2022.

HAN, Hye-Sook et al. Regulation of glucose metabolism from a liver-centric

perspective. Experimental & Molecular Medicine, v. 48, n. 3, p. 1-10, mar. 2016. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892876/. Acesso em:

set. 2022.

HARREITER, Jürgen; RODEN, Michael. Diabetes mellitus-Definition, classification,

diagnosis, screening and prevention (Update 2019). Wiener Klinische

Wochenschrift, v. 131, p. 6-15, maio 2019. DOI: 10.1007/s00508-019-1450-4.

HOFFMANN, Markus et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2

and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, v. 181, n. 2, p. 271-280,

abr. 2020. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102627/.

Acesso em: 17 ago. 2022.

HUANG, Chaolin et al. 6-month consequences of COVID-19 in patients discharged

from hospital: a cohort study. The Lancet, Londres, v. 397, n. 10270, p. 220-232, jan.

Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7833295/.

Acesso em: 15 out. 2022.

HUANG, Chaolin et al. Clinical features of patients infected with 2019 novel

coronavirus in Wuhan, China. The Lancet, Londres, v. 395, n. 10223, p. 497-506, fev.

Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7159299/.

Acesso em: 12 ago. 2022.

JONES, A G; HATTERSLEY, A T. The clinical utility of C-peptide measurement in the

care of patients with diabetes. Diabetic Medicine, v. 30, n. 7, p. 803-817, jul. 2013.

Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748788/. Acesso em:

set. 2022.

JUDGE, Ayesha; DODD, Michael S. Metabolism. Essays in Biochemistry, v. 64, n.

, p. 607-647, ago. 2020. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545035/. Acesso em: 30 ago. 2022.

KARMOUTY-QUINTANA, Harry et al. Emerging Mechanisms of Pulmonary

Vasoconstriction in SARS-CoV-2-Induced Acute Respiratory Distress Syndrome

(ARDS) and Potential Therapeutic Targets. International Journal of Molecular Sciences, v. 21, n. 21, p. 1-21, out. 2020. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662604/. Acesso em: 23 ago. 2022.

KAZAKOU, Paraskevi et al. Diabetes and COVID-19; A Bidirectional

Interplay. Frontiers in Endocrinology, v. 13, p. 1-12, fev. 2022. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891603/. Acesso em: 10 out. 2022.

KHUNTI, Kamlesh et al. COVID-19, Hyperglycemia, and New-Onset

Diabetes. Diabetes care, v. 44, n. 12, p. 2645-2655, dez. 2021. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8669536/. Acesso em: 11 out. 2022.

KIRTIPAL, Nikhil et al. From SARS to SARS-CoV-2, insights on structure,

pathogenicity and immunity aspects of pandemic human coronaviruses. Elsevier, v.

, p. 1-15, ago. 2020. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425554/. Acesso em: 12 ago. 2022.

KOROMPOKI, Eleni et al. Epidemiology and organ specific sequelae of post-acute

COVID19: A narrative review. The Journal of Infection, v. 83, n. 1, p. 1-16, jul. 2021.

Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8118709/. Acesso em:

out. 2022.

KUMAR, Manoj; AL KHODOR, Souhaila. Pathophysiology and treatment strategies for

COVID-19. Journal of Translational Medicine, v. 18, n.1, p. 1-9, set. 2020.

Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7491044/. Acesso em:

ago. 2022.

KUSMARTSEVA, Irina et al. Expression of SARS-CoV-2 Entry Factors in the

Pancreas of Normal Organ Donors and Individuals with COVID-19. Cell

Metabolism, v. 32, n. 6, p. 1041-1051, dez. 2020. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664515/. Acesso em: 10 out. 2022.

LI, Meng-Yuan et al. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a

wide variety of human tissues. Infectious Diseases of Poverty, v. 9, p. 1-7, abr.2020. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7186534/.

Acesso em: 23 ago. 2022.

LIMA-MARTÍNEZ, Marcos M. et al. COVID-19 y diabetes mellitus: una relación

bidireccional. Clínica e Investigacion en Arteriosclerosis, v. 33, n. 3, p. 151-157,

out. 2020. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598432/.

Acesso em: 26 ago. 2022.

LISCO, Giuseppe et al. COVID-19 and the Endocrine System: A Comprehensive

Review on the Theme. Journal of Clinical Medicine, vol. 10, n. 13, p. 1-29, jun. 2021.

Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269331/. Acesso em:

nov. 2022.

MAGGE, Sheela N et al. The coronavirus disease 2019 pandemic is associated with

a substantial rise in frequency and severity of presentation of youth-onset type 2

diabetes. The Journal of Pediatrics, p. 1-8, ago. 2022. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9383958/. Acesso em: 07 out. 2022.

MARKS, Brynn E. et al. Increase in the Diagnosis and Severity of Presentation of

Pediatric Type 1 and Type 2 Diabetes during the COVID-19 Pandemic. Hormone

Research in Paediatrics, v. 94, n. 7-8, p. 275-284, set. 2021. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805060/. Acesso em: 29 set. 2022.

MEMON, Bushra; ABDELALIM, Essam M. ACE2 function in the pancreatic islet:

Implications for relationship between SARS-CoV-2 and diabetes. Acta Physiologica,

Oxford, v. 233, n. 4, p. 1-13, out. 2021. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8646749/. Acesso em: 20 ago. 2022.

MINE, Keiichiro et al. SARS-CoV-2 Infection and Pancreatic β Cell Failure. Biology, v.

, n.1, p. 1-16, dec. 2021. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772979/. Acesso em: 07 ago. 2022.

MÜLLER, Janis A et al. SARS-CoV-2 infects and replicates in cells of the human

endocrine and exocrine pancreas. Nature Metabolism, v. 3, n.2, p. 149-165, fev.

DOI:10.1038/s42255-021-00347-1.

MURALIDAR, Shibi et al. The emergence of COVID-19 as a global pandemic:

Understanding the epidemiology, immune response and potential therapeutic targets

of SARS-CoV-2. Elsevier, v. 179, p. 85-100, set. 2020. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505773/. Acesso em: 15 ago. 2022.

NASSAR, Mahmoud et al. Diabetes Mellitus and COVID-19: Review Article. Diabetes

& Metabolic Syndrome, vol. 15, n. 6, p. 1-8, set. 2021. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8416292/. Acesso: 18 out. 2022.

NORRIS, Jill M et al. Type 1 diabetes-early life origins and changing epidemiology.

Lancet Diabetes Endocrinol, v. 8, n. 3, p. 226-238, mar. 2020. DOI:10.1016/S2213-

(19)30412-7.

PAPPACHAN, Joseph M et al. Diagnostic Test Accuracy of Urine C-peptide Creatinine

Ratio for the Correct Identification of the Type of Diabetes: A Systematic

Review. TouchREVIEWS in Endocrinology, v. 18, n. 1, p. 2-9, jun. 2022. Disponível

em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354948/. Acesso em: 21 set.

PARASHER, Anant. COVID-19: Current understanding of its Pathophysiology, Clinical

presentation and Treatment. Postgraduate Medical Journal, v. 97, n. 1147, p. 312-

, maio 2021. DOI: 10.1136/postgradmedj-2020-138577.

PELLE, Maria Chiara et al. COVID-19 and diabetes-Two giants colliding: From

pathophysiology to management. Frontiers in Endocrinology, v. 13, p. 1-13, ago.

Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437522/.

Acesso em: 09 out. 2022.

QADIR, Mirza Muhammad Fahd et al. SARS-CoV-2 infection of the pancreas

promotes thrombofibrosis and is associated with new-onset diabetes. JCI Insight, v. 6, n. 16, p. 1-11, jul. 2021. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410013/. Acesso em: 24 ago. 2022.

REDONDO, Maria J. et al. The clinical consequences of heterogeneity within and

between different diabetes types. Diabetologia, v. 63, n. 10, p. 2040-2048, out. 2020.

DOI:10.1007/s00125-020-05211-7.

REWERS, Marian; LUDVIGSSON, Johnny. Environmental risk factors for type 1

diabetes. The Lancet, Londres, v. 387, n. 10035, p. 2340-2348, jun. 2016.

DOI:10.1016/S0140-6736(16)30507-4.

RODEN, Michael; SHULMAN, Gerald I. The integrative biology of type 2

diabetes. Nature, v. 576, n. 7785, p. 51-60, dez. 2019. 51-60. DOI:10.1038/s41586-

-1797-8.

RÖDER, Pia V et al. Pancreatic regulation of glucose homeostasis. Experimental &

Molecular Medicine, v. 48, n. 3, p. 1-19, mar. 2016. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892884/. Acesso em: 02 set. 2022.

SBD. Sociedade Brasileira de Diabetes. Diretrizes da Sociedade Brasileira

de Diabetes. São Paulo: Clannad, 2022.

SHI, Yu et al. An overview of COVID-19. Journal of Zhejiang University – Science

B, v. 21, n. 5, p. 343-360, maio 2020. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205601/. Acesso em: 13 ago. 2022.

SILHOL, François et al. Downregulation of ACE2 induces overstimulation of the reninangiotensin

system in COVID-19: should we block the renin-angiotensin

system? Hypertension research: official journal of the Japanese Society of

Hypertension, v. 43, n.8, p. 854-856, maio 2020. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242178/. Acesso em: 19 ago. 2022.

SINGH, Awadhesh Kumar; SINGH, Ritu. Hyperglycemia without diabetes and newonset

diabetes are both associated with poorer outcomes in COVID-19. Diabetes

Research and Clinical Practice, v. 167, p. 1-5, set. 2020. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7445123/. Acesso em: 07 out. 2022.

SKYLER, Jay S. et al. Differentiation of Diabetes by Pathophysiology, Natural History,

and Prognosis. Diabetes, v. 66, n. 2, p. 241-255, fev. 2017. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384660/. Acesso em: 11 set. 2022.

SRIRAM, Krishna; INSEL, Paul A. A hypothesis for pathobiology and treatment of

COVID-19: The centrality of ACE1/ACE2 imbalance. British Journal of

Pharmacology, v. 177, n. 21, p. 4825-4844, nov. 2020. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7572451/. Acesso em: 22 ago. 2022.

STEENBLOCK, Charlotte et al. Diabetes and COVID-19: Short- and Long-Term

Consequences. Hormone and metabolic research, v. 54, n. 8, p. 503-509, ago.

Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9363150/.

Acesso em: 16 out. 2022.

THORENS, Bernard. GLUT2, glucose sensing and glucose homeostasis.

Diabetologia, v. 58, n. 2, p. 1-12, fev. 2015. DOI:10.1007/s00125-014-3451-1.

TITCHENELL, Paul M. et al. Unraveling the Regulation of Hepatic Metabolism by

Insulin. Trends in Endocrinology and Metabolism, v. 28, n. 7, p. 497-505, jul. 2017.

Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477655/. Acesso em:

set. 2022.

TRIGGLE, Chris R. et al. A Comprehensive Review of Viral Characteristics,

Transmission, Pathophysiology, Immune Response, and Management of SARS-CoV-

and COVID-19 as a Basis for Controlling the Pandemic. Frontiers in Immunology,

v. 12, p. 1-23, fev. 2021. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952616/. Acesso em: 15 ago. 2022.

REVISTA TRANSFORMAR 16(2), JUL.DEZ.2022. E- ISSN: 2175-8255 430

WALLS, Alexandra C. et al. Structure, Function, and Antigenicity of the SARS-CoV-2

Spike Glycoprotein. Cell, v. 181, n.2, p. 281-292, abr. 2020. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102599/. Acesso em: 19 ago. 2022.

WOLF, Risa M. et al. Increase in newly diagnosed type 1 diabetes in youth during the

COVID-19 pandemic in the United States: A multi-center analysis. Pediatric

Diabetes, v. 23, n. 4, p. 433-438, mar. 2022. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9115477/. Acesso em: 04 out. 2022.

WOODBY, Brittany et al. SARS-CoV-2 infection, COVID-19 pathogenesis, and

exposure to air pollution: What is the connection? Annals of the New York Academy

of Sciences, v. 1486, n. 1, p. 15-38, fev. 2021. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7675684/. Acesso em: 17 ago. 2022.

WU, Canrong et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of

potential drugs by computational methods. Acta Pharmaceutica Sinica B, v. 10, n.

, p. 766-788, fev. 2020. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102550/. Acesso em: 13 ago. 2022.

WU, Chien-Ting et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell

impairment. Cell Metabolism, v. 33, n. 8, p. 1565-1576, ago. 2021. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8130512/. Acesso em: 09 out. 2022.

XIE, Fangying et al. Precision medicine in diabetes prevention, classification and

management. Journal of Diabetes Investigation, v. 9, n. 5, p. 998-1015, set. 2018.

Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123056/. Acesso em:

ago. 2022.

YANG, Jin-Kui et al. Binding of SARS coronavirus to its receptor damages islets and

causes acute diabetes. Acta Diabetologica, v. 47, N. 3, p. 193-199, 2010. Disponível

em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7088164/. Acesso em: 20 set.

YUKI, Koichi et al. COVID-19 pathophysiology: A review. Elsevier, Orlando, v. 215,

p. 1-7, abr. 2020. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169933/. Acesso em: 07 ago. 2022.


Apontamentos

  • Não há apontamentos.




Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Indexadores: